The Online Graduate Certificate from Penn Engineering Online is a for-credit credential that will produce an academic transcript and paper certificate. To earn a certificate, students can take a maximum of four (4) course units. Two of these four course units may be double-counted from your Penn Engineering graduate degree program.

Students may earn a maximum of two certificates. No course may be triple counted, i.e., counted for more than two credentials.

While most individuals will complete the Online Graduate Certificate program within one year, students may choose to extend their studies. In this case, all Certificate requirements must be met within a maximum of two years.

*Note: Degree students will receive first priority for course registration.

Data Science Online Graduate Certificate Courses (Spring 2023 – Fall 2024)

CIS 5150 Fundamentals of Linear Algebra & Optimization (Math for Machine Learning)

CIS 5150

Fundamentals of Linear Algebra & Optimization (Math for Machine Learning)

There are hardly any machine learning problems whose solutions do not make use of linear algebra. This course presents tools from linear algebra and basic optimization that are used to solve various machine learning and computer science problems. It places emphasis on linear regression, data compression, support vector machines and more, which will provide a basis for further study in machine learning, computer vision, and data science. Both theoretical and algorithmic aspects will be discussed, and students will apply theory to real-world situations through MATLAB projects.

Pre-Requisites

Calculus (Chapters 8, 9, 10, and 48 of Schaum’s Outlines of Calculus fifth edition by Frank Ayers and Elliott Mendelssohn) Suggested: Undergraduate course in linear algebra (helpful but not required), Chapters 1 through 3 of Schaums Outline of Linear Algebra, fourth version by Seymour Lipschitz and Marc Lipson

CIS 5210 Artificial Intelligence

CIS 5210

Artificial Intelligence

This course investigates algorithms to implement resource-limited knowledge-based agents which sense and act in the world. Topics include: search, machine learning, probabilistic reasoning, natural language processing, knowledge representation and logic. After a brief introduction to the language, programming assignments will be in Python. This course must be taken in the first semester of the program.

Pre-Requisites

CIT 5910, CIT 5920, CIT 5940, and CIT 5960

CIS 5300 Natural Language Processing

CIS 5300

Natural Language Processing

This course provides an overview of the field of natural language processing. The goal of the field is to build technologies that will allow machines to understand human languages. Applications include machine translation, automatic summarization, question answering systems, and dialog systems. NLP is used in technologies like Amazon Alexa and Google Translate.

Pre-Requisites

CIT 5910 Introduction to Software Development, CIT 5920 Mathematical Foundations of Computer Science , and CIT 5940 Data Structures & Software Design. Recommended: CIT 5960

CIS 5450 Big Data Analytics

CIS 5450

Big Data Analytics

In the new era of big data, we are increasingly faced with the challenges of processing vast volumes of data. Given the limits of individual machines (compute power, memory, bandwidth), increasingly the solution is to process the data in parallel on many machines. This course focuses on the fundamentals of scaling computation to handle common data analytics tasks. You will learn about basic tasks in collecting, wrangling, and structuring data; programming models for performing certain kinds of computation in a scalable way across many compute nodes; common approaches to converting algorithms to such programming models; standard toolkits for data analysis consisting of a wide variety of primitives; and popular distributed frameworks for analytics tasks such as filtering, graph analysis, clustering, and classification.

Pre-Requisites

CIT 5910 Introduction to Software Development or equivalent programming experience; Broad familiarity with probability and statistics, as well as programming in Python; Additional background in statistics, data analysis (e.g., in Matlab or R), and machine learning is helpful (example: ESE 5420 Statistics for Data Science: An Applied Machine Learning Course)

CIS 5500 Database & Information Systems

CIS 5500

Database & Information Systems

Structured information is the lifeblood of commerce, government, and science today. This course provides an introduction to the broad field of information management systems, covering a range of topics relating to structured data, from data modeling to logical foundations and popular languages, to system implementations. We will study the relational data model; SQL; database design using the Entity-Relationship model and relational design theory; transactions and updates; efficient storage of data; indexes; query execution and query optimization; and “big data” and NoSQL systems.

Pre-Requisites

CIT 5910 Introduction to Software Development, CIT 5920 Mathematical Foundations of Computer Science | Knowledge of Javascript & Web Development (HTML, CSS) is recommended. | Recommended Corequisite: CIT 5960 Algorithms & Computation

CIS 5810 Computer Vision & Computational Photography

CIS 5810

Computer Vision & Computational Photography

This is an introductory course to computer vision and computational photography. This course will explore four topics: 1) image feature detection, 2) image morphing, 3) image stitching, and 4) deep learning related to images. This course is intended to provide a hands-on experience with interesting things to do on images/pixels. The world is becoming image-centric. Cameras are now found everywhere: in our cell phones, automobiles, and even in medical surgery tools. In addition, computer vision technology has led to innovations in areas such as movie production, medical diagnosis, biometrics, and digital library. This course is suited for students with any engineering background who have a basic understanding of linear algebra and programming, along with plenty of imagination.

Pre-Requisites

CIT 5910 Introduction to Software Development, CIT 5920 Mathematical Foundations of Computer Science, CIT 5930 Introduction to Computer Systems and CIT 5940 Data Structures & Software Design. Students may take CIT 5950 Computer Systems Programming and/or CIT 5960 Algorithms & Computation concurrently with this elective.

DATS 5750 Cloud Technologies Practicum (.5 CU)

DATS 5750

Cloud Technologies Practicum (.5 CU)

Cloud computing is the heart of modern digital applications. This course provides practical, hands-on knowledge and understanding of distributed computing principles to design and develop applications that utilize public clouds such as Google Cloud, Amazon Web Services, Azure, etc. The course will cover cloud infrastructure services for computing, storage, networking, data analytics, machine learning, and modern application development. Students will learn to architect and implement complex applications utilizing different cloud infrastructure components to engineer robust, scalable solutions across practical industry use cases.

 

WATCH COURSE PREVIEW HERE

Pre-Requisites

CIT 5910, CIT 5920, CIT 5930, CIT 5940, and CIT 5950

EAS 5740 How to Use Data (.5 CU)

EAS 5740

How to Use Data (.5 CU)

This 0.5 CU course is an excellent introduction for those who want to learn about the mechanics of data, performing data analysis to gain insights, applying data science techniques to make predictions, and applying data analytics to answer questions and to address interesting business problems. Students will learn how to interpret and frame business problems to be addressed by analytics. The course will also cover different elements of the data analytics process, including data wrangling and cleaning, data exploration and descriptive analytics, data modeling, machine learning, predictive analytics, data visualization and the presentation of analysis and insights using data storytelling. While we will touch upon essential theoretical and technical concepts, our primary focus in this course will be on the practical application of data skills.

WATCH COURSE PREVIEW HERE

Pre-Requisites

CIT 5910

EAS 5850 Imaging Informatics (.5 CU)

EAS 5850

Imaging Informatics (.5 CU)

This 0.5 CU course provides a comprehensive introduction to the field of imaging informatics, with a focus on radiology as the clinical imaging domain. Students will learn about the importance of informatics to the clinical practice of radiology, the unique types of data encountered, relevant data and transactional standards, the growing role of artificial intelligence in radiology, and the challenges faced by imaging informaticists around the globe. This course is geared to any student interested in imaging informatics, and does not require prior training or experience in medicine or medical imaging. Homework assignments include synthesizing reading content and preparing written responses, managing radiology data though coding, and using generative AI to explore health literacy. Unlike other offerings in the course catalog, Imaging Informatics provides a distinctive blend of informatics and radiology, focusing on practical applications and hands-on experience in managing and interpreting medical imaging data, with less focus on intensive coding and technical skill development.

WATCH COURSE PREVIEW HERE

Pre-Requisites

CIT 5910

EAS 5860 Medical Image Analysis (.5 CU)

EAS 5860

Medical Image Analysis (.5 CU)

This 0.5 CU course provides a comprehensive introduction to medical image analysis. Students will learn the basics of Computer Vision with an emphasis on the special challenges of automated medical image analysis for clinical healthcare and medical research. Students will be required to visually assess the images, and work with key Machine Learning technology to interpret data on the actual medical image scans. The course is appropriate for students without prior medical or imaging training.

WATCH COURSE PREVIEW HERE

Pre-Requisites

CIT 5910, CIT 5920, CIT 5940, and CIS 5210 or ESE 5410

ESE 5410 Machine Learning for Data Science

ESE 5410

Machine Learning for Data Science

Machine Learning for Data Science is a foundational course designed to equip students with the essential skills necessary for a career in data science and machine learning. This comprehensive course delves into the fundamentals of machine learning, addressing key concepts such as the curse of dimensionality, model selection and validation, regularization, bootstrap and uncertainty quantification. Students will gain hands-on experience with a variety of machine learning models including regression and classification trees, ensemble learning, boosting, support vector machines, neural networks, hierarchical clustering and K-means. The curriculum is structured to provide practical Python programming skills, which are crucial for succeeding in subsequent courses. By applying these techniques to real-world scenarios in finance, business and industry, the course ensures that students not only understand the theory behind machine learning but also how to apply it effectively in professional settings. This course is an indispensable part of the educational journey for aspiring data scientists, laying the groundwork for further studies and applications in the field.

Pre-Requisites

CIT 5920 Mathematical Foundations of Computer Science, Programming background, Basic Probability

ESE 5420 Statistics for Data Science

ESE 5420

Statistics for Data Science

The course covers the methodological foundations of data science, emphasizing basic concepts in statistics and learning theory, but also modern methodologies. Learning of distributions and their parameters. Testing of multiple hypotheses. Linear and nonlinear regression and prediction. Classification. Uncertainty quantification. Model validation. Clustering. Dimensionality reduction. Probably approximately correct (PAC) learning. Such theoretical concepts are further complemented by exemplar applications, case studies (datasets), and programming exercises (in Python) drawn from electrical engineering, computer science, the life sciences, finance, and social networks.

Pre-Requisites

CIT 5920 Mathematical Foundations of Computer Science, Programming background, Basic Probability